
Anna Marciniak-Czochra (Heidelberg University) 

Title: Mathematics of pattern formation: Emergence and stability of spatio-temporal structures 

Abstract: The lectures are devoted to mathematical analysis of pattern formation models local and 

nonlocal interactions. Such models arise from applications in biosciences and describe coupling of 

diffusive or mechanical signalling and nonlinear intracellular feedbacks. We focus on two-component 

reaction-diffusion and reaction-diffusion-ODE systems which serve as basic models to understand 

pattern formation mechanisms. The presented theory includes the classical Turing-type pattern 

formation (based on diffusion-driven instability of spatially homogenous steady states), and more 

recent results based on existence of multi-stability and hysteresis. Comparing both mechanisms, we 

show that in reaction-diffusion-ODE models all close-to-equilibrium (Turing) patterns are unstable 

and only hysteresis-driven spatially heterogenous structures with jump discontinuities (far-from-

equilibrium patterns) may be stable.  The latter analysis requires new criteria for linear and nonlinear 

stability analysis. We characterize the spectrum of the linearized operator and relate its spectral 

properties to the corresponding semigroup properties. The applied methods of model analysis 

involve two-point boundary value problems, semigroup theory, spectral analysis and singular 

perturbation methods. Finally, we show that in some cases diffusion may lead to unbounded growth 

of solutions and mass concentration. The established mathematical theory is presented in the 

context of new models and experiments of symmetry breaking and pattern formation in Hydra, 

which is a model organism of developmental biology. 

 

Sara Merino-Aceituno (University of Vienna) 

Title: Pattern formation in models for collective motion using linear stability analysis 

Abstract: Agent-based models for many-particles systems are typically hard to analyze 

mathematically. In contrast, the continuum descriptions of these systems are more prone to 

mathematical analyses, in particular, linear stability analysis. I will present how to apply linear 

stability analysis to investigate pattern formation in models for collective dynamics. 

 

Ayman Moussa (Sorbonne Université) 

Title: Cross Diffusion systems 

Abstract: The purpose of this course is to study a class of systems of partial differential equations 

(PDE) used in population dynamics to describe the occupation of a space by different animal species. 

In a classical way, populations are described through two fundamental mechanisms: the dispersion 

of individuals (modeled by a diffusion operator) and their reproduction or death (modeled by a 

reaction term). The specificity of the systems on which we will focus lies in the expression "cross-

diffusion": for such systems the diffusivity (or the motility) of a species depends - potentially in a 

non-linear way - on the presence of its competitors. 

The first publication proposing such a system dates from 1979, in the Journal of Theoretical Biology. 

The authors, Shigesada, Kawasaki and Teramoto proposed this type of system (henceforth called 

"SKT") to capture segregation phenomena, that is: an almost disjoint distribution of space between 

the different constituents of the population. It is often the case in applied mathematics that an 

efficient modeling tool leads to interesting and surprisingly difficult mathematical questions; we will 

see in this course that cross-diffusion systems are a nice illustration of this fact. 



After a quick introduction that will (formally) unveil the link between cross-diffusion and segregation, 

the course will first focus on the so-called Kolmogorov equation, a parabolic PDE whose diffusion 

operator is adapted to the behavior of sensitive individuals (as opposed to Fick's law, for the diffusion 

of lifeless matter). This equation being the basic building block of the cross-diffusion systems that we 

will study, it will be necessary to understand it in a framework of very weak regularity. 

We will then approach the study of cross-diffusion systems. As it is often the case for nonlinear PDEs, 

we will see that the very question of the existence of solutions is not a triviality. We will provide a 

scheme for the construction of global weak solutions by approximation-compactness, based on the 

dissipation over time of an entropy functional and the persistence of this structure for non-local 

versions of the system. We will also explain how this existence proof gives in fact, in several cases, a 

rigorous justification of the model. If we have enough time, another derivation will be provided, 

based on a semi-discrete scheme. 

In addition to exploring cross-diffusion systems, this course will illustrate some standard methods in 

the study of parabolic equations (maximum principle, Aubin-Lions lemma, compactness-

approximation, fixed point in infinite dimension, asymptotic analysis) that we will present in the 

specific framework that interests us while underlining the wider scope of these tools. 

 

Mariya Ptashnyk (Heriot-Watt University) 

First lecture: 

Title: Hopf Bifurcation for a system of parabolic equations with space-dependent coefficients 

Abstract: We shall consider a mathematical model for a canonical gene regulatory network. The 

model consists of two partial differential equations describing the spatio-temporal interactions 

between the protein and its mRNA. Such intracellular negative feedback systems are known to 

exhibit oscillatory behaviour. An important feature of the model is that it has only space-dependent 

stationary solutions. Using the linearized stability analysis we shall show that the diffusion coefficient 

acts as a bifurcation parameter and gives rise to a Hopf bifurcation. 

Second lecture: 

Title: Chemotaxis equations and stochastic homogenization 

Abstract: We will consider the Keller–Segel chemotaxis system in a random heterogeneous domain. 

First, we will analyse the system and derive a priori estimates that rely only on the boundedness of 

the coefficients; in particular, no differentiability assumption on the diffusion and chemotaxis 

coefficients for the chemotactic species is required. Then, we shall assume that the diffusion and 

chemotaxis coefficients are given by stationary ergodic random fields and apply stochastic two-scale 

convergence methods to derive the homogenized macroscopic equations. 

 

Vivi Rottschäfer (University of Leiden) 

Title: Pattern formation in reaction-diffusion systems 

Abstract: In this lecture series, we consider and analyse patterns that arise when basic, steady state 

solutions become unstable. Moreover, we assume that this instability appears because of the 

presence of the diffusion terms. The patterns that occur through this mechanism are small amplitude 

solutions that oscillate around the steady state. 



First, I will give an introduction to the general analysis of this phenomenon in reaction-diffusion 

systems. There I introduce the so-called Turing bifurcation. This Turing bifurcation occurs in many 

systems and equations, not only in those of reaction-diffusion type. Its presence and the implications 

of this has been widely studied. 

The Turing bifurcation results in periodic solutions.  I will give a derivation of an amplitude equation 

that describes the amplitude of such periodic solutions, the so-called Ginzburg-Landau equation. 

Next, I will apply the linear stability of a solution of systems where mass is conserved. Systems are 

called conserved if neither mass is created nor destroyed within the system. These type of systems 

are abundant in nature. An example is a system of grazers like cows. In this system there exist two 

types of cows: grazing cows and moving cows. The system is conserved because the number of cows 

does not change. The herbivores prefer to graze in places with low vegetation, and therefore, they 

aggregate towards these places. 

For a general mass conserved system, I will present the analysis leading to a Turing bifurcation. This 

analysis differs from that of the normal, non-conserved case. Also, I will show patterns that arise 

because of the presence of the Turing bifurcation. Apart from this, I will also briefly consider other 

patterns that arise far from equilibrium. 

 


